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Abstract. Bitwuzla is a new SMT solver for the quantifier-free and
quantified theories of fixed-size bit-vectors, arrays, floating-point arith-
metic, and uninterpreted functions. This paper serves as a comprehen-
sive system description of its architecture and components. We evaluate
Bitwuzla’s performance on all benchmarks of supported logics in SMT-
LIB and provide a comparison against other state-of-the-art SMT solvers.

1 Introduction

Satisfiability Modulo Theories (SMT) solvers serve as back-end reasoning engines
for a wide range of applications in formal methods (e.g., [13, 14, 21, 23, 35]).
In particular, the theory of fixed-size bit-vectors, in combination with arrays,
uninterpreted functions and floating-point arithmetic, have received increasing
interest in recent years, as witnessed by the high and increasing numbers of
benchmarks submitted to the SMT-LIB benchmark library [5] and the number
of participants in corresponding divisions in the annual SMT competition (SMT-
COMP) [42]. State-of-the-art SMT solvers supporting (a subset of) these theories
include Boolector [31], cvc5 [3], MathSAT [15], STP [19], Yices2 [17] and Z3 [25].
Among these, Boolector had been largely dominating the quantifier-free divisions
with bit-vectors and arrays in SMT-COMP over the years [2].

Boolector was originally published in 2009 by Brummayer and Biere [11] as
an SMT solver for the quantifier-free theories of fixed-size bit-vectors and arrays.
Since 2012, Boolector has been mainly developed and maintained by the authors
of this paper, who have extended it with support for uninterpreted functions and
lazy handling of non-recursive lambda terms [32, 38, 39], local search strategies
for quantifier-free bit-vectors [33,34], and quantified bit-vector formulas [40].

While Boolector is still competitive in terms of performance, it has several
limitations. Its code base consists of largely monolithic C code, with a rigid
architecture focused on a very specialized, tight integration of bit-vectors and
arrays. Consequently, it is cumbersome to maintain, and adding new features
is difficult and time intensive. Further, Boolector requires manual management
of memory and reference counts from API users; terms and sorts are tied to a
specific solver instance and cannot be shared across instances; all preprocessing
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techniques are destructive, which disallows incremental preprocessing; and due to
architectural limitations, incremental solving with quantifiers is not supported.

In 2018, we forked Boolector in preparation for addressing these issues, and
entered an improved and extended version of this fork as Bitwuzla in the SMT
competition 2020 [26]. At that time, Bitwuzla extended Boolector with: sup-
port for floating-point arithmetic by integrating SymFPU [8] (a C++ library of
bit-vector encodings of floating-point operations); a novel generalization of its
propagation-based local search strategy [33] to ternary values [27]; unsat core ex-
traction; and since 2022, support for reasoning about quantified formulas for all
supported theories and their combinations. This version of Bitwuzla was already
made available on GitHub at [28], but not officially released. However, archi-
tectural and structural limitations inherited from Boolector remained. Thus, to
overcome these limitations and address the above issues, we decided to discard
the existing code base and rewrite Bitwuzla from scratch.

In this paper, we present the first official release of Bitwuzla, an SMT solver
for the (quantified and quantifier-free) theories of fixed-size bit-vectors, arrays,
floating-point arithmetic, uninterpreted functions and their combinations. Its
name (pronounced as bitvootslah) is derived from an Austrian dialect expression
that can be translated as someone who tinkers with bits. Bitwuzla is written
in C++, inspired by techniques implemented in Boolector. That is, rather than
only redesigning problematic aspects of Boolector, we carefully dissected and
(re)evaluated its parts to serve as guidance when writing a new solver from
scratch. In that sense, it is not a reimplementation of Boolector, but can be
considered its superior successor. Bitwuzla is available on GitHub [28] under the
MIT license, and its documentation is available at [29].

2 Architecture

Bitwuzla supports reasoning about quantifier-free and quantified formulas over
fixed-size bit-vectors, floating-point arithmetic, arrays and uninterpreted func-
tions as standardized in SMT-LIB [4]. In this section, we provide an overview of
Bitwuzla’s system architecture and its core components as given in Figure 1.

Bitwuzla consists of two main components: the Solving Context and the Node
Manager. The Solving Context can be seen as a solver instance that determines
satisfiability of a set of formulas and implements the lazy, abstraction/refinement-
based SMT paradigm lemmas on demand [6,24] (in contrast to SMT solvers like
cvc5 and Z3, which are based on the CDCL(T ) [36] framework). The Node
Manager is responsible for constructing and maintaining nodes and types and is
shared across multiple Solving Context instances.

Bitwuzla provides a comprehensive C++ API as its main interface, with a C
and Python API built on top. All features of the C++ API are also accessible
to C and Python users. The API documentation is available at [29]. The C++

API exports Term, Sort, Bitwuzla, and Option classes for constructing nodes
and types, configuring solver options and constructing Bitwuzla solver instances
(the external representation of Solving Contexts). Term and Sort objects may be
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Fig. 1. Bitwuzla system architecture.

used in multiple Bitwuzla instances. The parser interacts with the solver instance
via the C++ API. A textual command line interface (CLI) builds on top of the
parser, supporting SMT-LIBv2 [4] and BTOR2 [35] as input languages.

2.1 Node Manager

Bitwuzla represents formulas and terms as reference-counted, immutable nodes
in a directed acyclic graph. The Node Manager is responsible for constructing
and managing these nodes and employs hash-consing to maximize sharing of
subgraphs. Automatic reference counting allows the Node Manager to determine
when to delete nodes. Similarly, types are constructed and managed by the Type
Manager, which is maintained by the Node Manager. Nodes and types are stored
globally (thread-local) in the Node Database and Type Database, which has the
key advantage that they can be shared between arbitrarily many solving contexts
within one thread. This is one of the key differences to Boolector’s architecture,
where terms and types are manually reference counted and tied to a single solver
instance, which does not allow sharing between solver instances.

2.2 Solving Context

A Solving Context is the internal equivalent of a solver instance and deter-
mines the satisfiability of a set of asserted formulas (assertions). Solving Con-
texts are fully configurable via options and provide an incremental interface
for adding and removing assertions via push and pop. Incremental solving al-
lows users to perform multiple satisfiability checks with similar sets of assertions



while reusing work from earlier checks. On the API level, Bitwuzla also sup-
ports satisfiability queries under a given set of assumptions (SMT-LIB command
check-sat-assuming), which are internally handled via push and pop.

Nodes and types constructed via the Node Manager may be shared between
multiple Solving Contexts. If the set of assertions is satisfiable, the Solving Con-
text provides a model for the input formula. It further allows to query model
values for any term, based on this model (SMT-LIB command get-value). In
case of unsatisfiable queries, the Solving Context can be configured to extract
an unsatisfiable core and unsat assumptions.

A Solving Context consists of three main components: a Rewriter, a Prepro-
cessor and a Solver Engine. The Rewriter and Preprocessor perform local (node
level) and global (over all assertions) simplifications, whereas the Solver Engine
is the central solving engine, managing theory solvers and their interaction.

Preprocessor. As a first step of each satisfiability check, prior to solving, the
preprocessor applies a pipeline of preprocessing passes in a predefined order
to the current set of assertions until fixed-point. Each preprocessing pass imple-
ments a set of satisfiability-preserving transformations. All passes can be option-
ally disabled except for one mandatory transformation, the reduction of the full
set of operators supported on the API level to a reduced operator set: Boolean
connectives are expressed by means of {¬,∧}, quantifier ∃ is represented in terms
of ∀, inequalities are represented in terms of < and >, signed bit-vector oper-
ators are expressed in terms of unsigned operators, and more. These reduction
transformations are a subset of the term rewrites performed by the Rewriter, and
rewriting is implemented as one preprocessing pass. Additionally, Bitwuzla im-
plements 7 preprocessing passes, which are applied sequentially, after rewriting,
until no further transformations are possible: and flattening, which splits a top-
level ∧ into its subformulas, e.g., a∧ (b∧ (c = d)) into {a, b, c = d}; substitution,
which replaces all occurrences of a constant x with a term t if x = t is derived
on the top level; skeleton preprocessing, which simplifies the Boolean skeleton of
the input formula with a SAT solver; embedded constraints, which substitutes
all occurrences of top-level constraints in subterms of other top-level constraints
with true; extract elimination, which eliminates bit-vector extracts over con-
stants; lambda elimination, which applies beta reduction on lambda terms; and
normalization of arithmetic expressions.

Preprocessing in Bitwuzla is fully incremental : all passes are applied to the
current set of assertions, from all assertion levels, and simplifications derived
from lower levels are applied to all assertions of higher levels (including assump-
tions). Assertions are processed per assertion level i, starting from i = 0, and for
each level i > 0, simplifications are applied based on information from all levels
j ≤ i. Note that when solving under assumptions, Bitwuzla internally pushes an
assertion level and handles these assumptions as assertions of that level. When
a level i is popped, the assertions of that level are popped, and the state of the
preprocessor is backtracked to the state that was associated with level i−1. Note
that preprocessing assertion levels i < j with information derived from level j
requires to not only restore the state of the preprocessor, but to also reconstruct



the assertions on levels i < j when level j is popped to the state before level j
was pushed, and is left to future work.

Boolector, on the other hand, only performs preprocessing based on top-
level assertions (assertion level 0) and does not incorporate any information
from assumptions or higher assertion levels.

Rewriter. The rewriter transforms terms via a predefined set of rewrite rules
into semantically equivalent normal forms. This transformation is local in the
sense that it is independent from the current set of assertions. We distinguish be-
tween required and optional rewrite rules, and further group rules into so-called
rewrite levels from 0–2. The set of required rules consists of operator elimination
rewrites, which are considered level 0 rewrites and ensure that nodes only con-
tain operators from a reduced base set. For example, the two’s complement −x
of a bit-vector term x is rewritten to (∼x+1) by means of one’s complement and
bit-vector addition. Optional rewrite rules are grouped into level 1 and level 2.
Level 1 rules perform rewrites that only consider the immediate children of a
node, whereas level 2 rules may consider multiple levels of children. If not im-
plemented carefully, level 2 rewrites can potentially destroy sharing of subterms
and consequently increase the overall size of the formula. For example, rewriting
(t + 0) to t is considered a level 1 rewrite rule, whereas rewriting (a − b = c)
to (b + c = a) is considered a level 2 rule since it may introduce an additional
bit-vector addition (b+ c) if (a− b) occurs somewhere else in the formula. The
maximum rewrite level of the rewriter can be configured by the user.

Rewriting is applied on the current set of assertions as a preprocessing pass
and, as all other passes, applied until fixed-point. That is, on any given term,
the rewriter applies rewrite rules until no further rewrite rules can be applied.
For this, the rewriter must guarantee that no set of applied rewrite rules may
lead to cyclic rewriting of terms. Additionally, all components of the solving
context apply rewriting on freshly created nodes to ensure that all nodes are
always fully normalized. In order to avoid processing nodes more than once, the
rewriter maintains a cache that maps nodes to their fully rewritten form.

Solver Engine. After preprocessing, the solving context sends the current set
of assertions to the Solver Engine, which implements a lazy SMT paradigm called
lemmas on demand [6, 24]. However, rather than using a propositional abstrac-
tion of the input formula as in [6, 24], it implements a bit-vector abstraction
similar to Boolector [12, 38]. At its core, the Solver Engine maintains a bit-
vector theory solver and a solver for each supported theory. Quantifier reasoning
is handled by a dedicated quantifiers module, implemented as a theory solver.
The Solver Engine manages all theory solvers, the distribution of relevant terms,
and the processing of lemmas generated by the theory solvers.

The bit-vector solver is responsible for reasoning about the bit-vector ab-
straction of the input assertions and lemmas generated during solving, which
includes all propositional and bit-vector terms. Theory atoms that do not be-
long to the bit-vector theory are abstracted as Boolean constants, and bit-vector
terms whose operator does not belong to the bit-vector theory are abstracted as



bit-vector constants. For example, an array select operation of type bit-vector
is abstracted as a bit-vector constant, while an equality between two arrays is
abstracted as a Boolean constant.

If the bit-vector abstraction is satisfiable, the bit-vector solver produces a sat-
isfying assignment, and the floating-point, array, function and quantifier solvers
check this assignment for theory consistency. If a solver finds a theory inconsis-
tency, i.e., a conflict between the current satisfying assignment and the solver’s
theory axioms, it produces a lemma to refine the bit-vector abstraction and rule
out the detected inconsistency. Theory solvers are allowed to send any number
of lemmas, with the only requirement that if a theory solver does not send a
lemma, the current satisfying assignment is consistent with the theory.

Finding a satisfying assignment for the bit-vector abstraction and the subse-
quent theory consistency checks are implemented as an abstraction/refinement
loop as given in Algorithm 1. Whenever a theory solver sends lemmas, the loop
is restarted to get a new satisfying assignment for the refined bit-vector ab-
straction. The loop terminates if the bit-vector abstraction is unsatisfiable, or
if the bit-vector abstraction is satisfiable and none of the theory solvers report
any theory inconsistencies. Note that the abstraction/refinement algorithm may
return unknown if the input assertions include quantified formulas.

Algorithm 1 Abstraction/refinement loop in Solver Engine. Function solve(A)
is called on the current set of preprocessed assertions A, which is iteratively
refined with a set of Lemmas L.

function solve(A)
r ← Unknown, L ← ∅
repeat
A ← A∪ L
r,M← TBV ::solve(A) ▷ Solve bit-vector abstraction of A
if r = Unsat then break end if

L ← TFP ::check(M) ▷ Check FP theory consistency ofM
if L ≠ ∅ then continue end if

L ← TA::check(M) ▷ Check array theory consistency ofM
if L ≠ ∅ then continue end if

L ← TUF ::check(M) ▷ Check UF theory consistency ofM
if L ≠ ∅ then continue end if

L ← TQ::check(M) ▷ Check quantified formulas inM
until L = ∅
return r

end function

Backtrackable Data Structures. Every component of the Solver Context
except for the Rewriter depends on the current set of assertions. When solv-
ing incrementally, the assertion stack is modified by adding (SMT-LIB com-



mand push) and removing (SMT-LIB command pop) assertions. In contrast to
Boolector, Bitwuzla supports saving and restoring the internal solver state, i.e.,
the state of the Solving Context, corresponding to these push and pop operations
by means of backtrackable data structures. These data structures are custom vari-
ants of mutable data structures provided in the C++ standard library, extended
with an interface to save and restore their state on push and pop calls. This
allows the solver to take full advantage of incremental solving by reusing work
from previous satisfiability checks and backtracking to previous states. Further,
this enables incremental preprocessing. Bitwuzla’s backtrable data structures are
conceptually similar to context-dependent data structures in cvc5 [3].

3 Theory Solvers

The Solver Engine maintains a theory solver for each supported theory and im-
plements a module for handling quantified formulas as a dedicated theory solver.
The central engine of the Solver Engine is the bit-vector theory solver, which
reasons about a bit-vector abstraction of the current set of input assertions, re-
fined with lemmas generated by other theory solvers. The theories of fixed-size
bit-vectors, arrays, floating-point arithmetic, and uninterpreted functions are
combined via a model-based theory combination approach similar to [12,38].

Theory combination is based on candidate models produced by the bit-
vector theory solver for the bit-vector abstraction (function TBV ::solve() in Algo-
rithm 1). For each candidate model, each theory solver checks consistency with
the axioms of the corresponding theory (functions T∗::check() in Algorithm 1). If
a theory solver requests a model value for a term that is not part of the current
bit-vector abstraction, the theory solver who “owns” that term is queried for a
value. If this value or the candidate model is inconsistent with the axioms of the
theory querying the value, it sends a lemma to refine the bit-vector abstraction.

3.1 Arrays

The array theory solver implements and extends the array procedure from [12]
with support for reasoning over (equalities of) nested arrays and non-extensional
constant arrays. This is in contrast to Boolector, which generalizes the lemmas
on demand procedure for extensional arrays as described in [12] to non-recursive
first-order lambda terms [37,38], without support for nested arrays. Generalizing
arrays to lambda terms allows to use the same procedure for arrays and uninter-
preted functions and enables a natural, compact representation and extraction
of extended array operations such as memset, memcpy and array initialization
patterns as described in [39]. As an example, memset(a, i, n, e), which updates
n elements of array a within range [i, i + n[ to a value e starting from index i,
can be represented as λj . ite(i ≤ j < i + n, e, a[j]). Reasoning over equalities
involving arbitrary lambda terms (including these operations), however, requires
higher-order reasoning, which is not supported by Boolector. Further, extension-
ality over standard array operators that are represented as lambda terms (e.g.,



store) requires special handling, which makes the procedure unnecessarily com-
plex. Bitwuzla, on the other hand, implements separate theory solvers for arrays
and uninterpreted functions. Consequently, since it does not generalize arrays
to lambda terms, it cannot utilize the elegant representation of Boolector for
the extended array operations of [39]. Thus, currently, extracting and reason-
ing about these operations is not yet supported. Instead of representing such
operators as lambda terms, we plan to introduce specific array operators. This
will allow a seamless integration into Bitwuzla’s array procedure, with support
for reasoning about extensionality involving these operators. We will also add
support for reasoning about extensional constant arrays in the near future.

3.2 Bit-Vectors

The bit-vector theory solver implements two orthogonal approaches: the classic
bit-blasting technique employed by most state-of-the-art bit-vector solvers, which
eagerly translates the current bit-vector abstraction to SAT; and the ternary
propagation-based local search approach presented in [27]. Since local search pro-
cedures only allow to determine satisfiability, they are particularly effective as
a complementary strategy, in combination with (rather than instead of) bit-
blasting [27,33]. Bitwuzla’s bit-vector solver allows to combine local search with
bit-blasting in a sequential portfolio setting: the local search procedure is run
until a predefined resource limit is reached before falling back on the bit-blasting
procedure. Currently, Bitwuzla allows combining these two approaches only in
this particular setting. We plan to explore more interleaved configurations, pos-
sibly while sharing information between the procedures as future work.

Bit-Blasting. Bitwuzla implements the eager reduction of the bit-vector abstrac-
tion to propositional logic in two phases. First, it constructs an And-Inverter-
Graph (AIG) circuit representation of the abstraction while applying AIG-level
rewriting techniques [10]. This AIG circuit is then converted into Conjunctive
Normal Form (CNF) via Tseitin transformation and sent to the SAT solver
back-end. Note that for assertions from levels > 0, Bitwuzla leverages solving
under assumptions in the SAT solver in order to be able to backtrack to lower
assertion levels on pop. Bitwuzla supports CaDiCaL [7], CryptoMiniSat [41],
and Kissat [7] as SAT back-ends and uses CaDiCaL as its default SAT solver.

Local Search. Bitwuzla implements an improved version of the ternary propa-
gation-based local search procedure described in [27]. This procedure is a gener-
alization of the propagation-based local search approach implemented in Boolec-
tor [33] and addresses one of its main weaknesses: its obliviousness to bits that
can be simplified to constant values. Propagation-based local search is based
on propagating target values from the outputs to the inputs, does not require
bit-blasting, brute-force randomization or restarts, and lifts the concept of back-
tracing of Automatic Test Pattern Generation (ATPG) [22] to the word-level.
Boolector additionally implements the stochastic local search (SLS) approach
presented in [18], optionally augmented with a propagation-based strategy [34].



Bitwuzla, however, only implements our ternary propagation-based approach
since it was shown to significantly outperform these approaches [33].

3.3 Floating-Point Arithmetic

The solver for the theory of floating-point arithmetic implements an eager trans-
lation of floating-point atoms in the bit-vector abstraction to equisatisfiable for-
mulas in the theory of bit-vectors, a process sometimes referred to as word-
blasting. To translate floating-point expressions to the word-level, Bitwuzla in-
tegrates SymFPU [9], a C++ library of bit-vector encodings of floating-point
operations. SymFPU uses templated types for Booleans, (un)signed bit-vectors,
rounding modes and floating-point formats, which allows utilizing solver-specific
representations. SymFPU has also been integrated into cvc5 [3].

3.4 Uninterpreted Functions

For the theory of uninterpreted functions (UF), Bitwuzla implements dynamic
Ackermannization [16], which is a lazy form of Ackermann’s reduction. The
UF solver checks whether the current satisfying assignment of the bit-vector
abstraction is consistent with the function congruence axiom ā = b̄ → f(ā) =
f(b̄) and produces a lemma whenever the axiom is violated.

3.5 Quantifiers

Quantified formulas are handled by the quantifiers module, which is treated as
a theory solver and implements model-based quantifier instantiation [20] for all
supported theories and their combinations. In the bit-vector abstraction, quan-
tified formulas are abstracted as Boolean constants. Based on the assignment of
these constants, the quantifiers solver produces instantiation or Skolemization
lemmas. If the constant is assigned to true, the quantifier is treated as univer-
sal quantifier and the solver produces instantiation lemmas. If the constant is
assigned to false, the solver generates a Skolemization lemma. Bitwuzla allows
to combine quantifiers with all supported theories as well as incremental solving
and unsat core extraction. This is in contrast to Boolector, which only supports
sequential reasoning about quantified bit-vector formulas and, generally, does
not provide unsat cores for unsatisfiable instances.

4 Evaluation

We evaluate the overall performance of Bitwuzla on all non-incremental and
incremental benchmarks of all supported logics in SMT-LIB [5]. We further
include logics with floating-point arithmetic that are classified as containing
linear integer arithmetic (LRA). Bitwuzla does not support LRA reasoning, but
the benchmarks in these logics currently only involve to-floating-point conversion
(SMT-LIB command to fp) from real values, which is supported.



Logic Boolector Z3 cvc5 SC22 Bitwuzla

ABV (169) - 89 32 0 1
ABVFP (30) - 25 19 0 16
ABVFPLRA (75) - 47 36 0 31
AUFBV (1,522) - 403 486 597 983
AUFBVFP (57) - 7 21 24 39
BV (6,045) 5,659 5,593 5,818 5,624 5,705
BVFP (205) - 176 171 148 188
BVFPLRA (209) - 189 107 140 199
FP (2,669) - 2,128 2,353 2,513 2,481
FPLRA (87) - 72 51 55 83
QF ABV (15,084) 15,041 14,900 14,923 15,043 15,041
QF ABVFP (18,129) - 18,017 18,113 18,125 18,125
QF ABVFPLRA (74) - 69 74 34 74
QF AUFBV (67) 45 50 42 46 55
QF AUFBVFP (1) - 1 1 1 1
QF BV (42,472) 41,958 40,876 41,574 42,039 42,049
QF BVFP (17,244) - 17,229 17,238 17,242 17,241
QF FP (40,409) - 40,303 40,357 40,368 40,358
QF FPLRA (57) - 41 48 56 56
QF UFBV (1,434) 1,403 1,404 1,387 1,413 1,411
QF UFFP (2) - 2 2 2 2
UFBV (192) - 156 141 146 147
UFBVFP (2) - 1 1 1 1

Total (146,235) 64,106 141,778 142,995 143,617 144,287

Time (solved) [s] 417,643 1,212,584 1,000,466 563,832 580,435

Table 1. Solved instances and total runtime on solved instances (non-incremental).

Logic Boolector Z3 cvc5 SC22 Bitwuzla

ABVFPLRA (2,269) - 2,220 818 55 2,269
BV (38,856) - 37,188 36,169 35,567 35,246
BVFP (458) - 458 458 274 458
BVFPLRA (5,597) - 5,507 2,964 3,144 4,797
QF ABV (3,411) 3,238 2,866 2,746 3,242 2,939
QF ABVFP (550,088) - 515,714 534,629 550,034 550,041
QF ABVFPLRA (1,876) - 48 1,876 1,876 1,876
QF AUFBV (967) 23 860 320 23 956
QF BV (53,684) 52,218 51,826 51,683 51,581 52,305
QF BVFP (3,465) - 3,403 3,437 3,444 3,438
QF BVFPLRA (32,736) - 31,287 32,681 32,736 32,736
QF FP (663) - 663 663 663 663
QF FPLRA (48) - 48 48 48 48
QF UFBV (5,492) 4,634 5,422 5,148 2,317 5,489
QF UFFP (2) - 2 2 2 2

Total (699,612) 60,113 657,512 673,642 685,006 693,263

Time (solved) [s] 102,812 3,359,645 1,516,672 157,083 172,534

Table 2. Solved queries and total runtime on solved queries (incremental).



We compare against Boolector [31] and the SMT-COMP 2022 version of
Bitwuzla [26] (configuration SC22), which, at that time, was an improved and
extended version of Boolector and won several divisions in all tracks of SMT-
COMP 2022 [2]. Boolector did not participate in SMT-COMP 2022, thus we use
the current version of Boolector available on GitHub (commit 13a8a06d) [1].
Further, since Boolector does not support logics involving floating-point arith-
metic, quantified logics other than pure quantified bit-vectors and incremental
solving when quantifiers are involved, we also compare against the SMT-COMP
2022 versions of cvc5 [3] and Z3 [25]. Both solvers are widely used, high per-
formance SMT solvers with support for a wide range of theories, including the
theories supported by Bitwuzla. Note that this version of cvc5 uses a sequential
portfolio of multiple configurations for some logics.

We ran all experiments on a cluster with Intel Xeon E5-2620 v4 CPUs. We
allocated one CPU core and 8GB of RAM for each solver and benchmark pair,
and used a 1200s time limit, the same time limit as used in SMT-COMP 2022 [2].

Table 1 shows the number of solved benchmarks for each solver in the non-
incremental quantifier-free (QF ) and quantified divisions. Overall, Bitwuzla
solves the largest number of benchmarks in the quantified divisions, considerably
improving over SC22 and Boolector with over 600 and 4,200 solved benchmarks,
respectively. Bitwuzla also takes the lead in the quantifier-free divisions, with 44
more solved instances compared to SC22, and more than 650 solved benchmarks
compared to cvc5. On the 140,438 commonly solved instances between Bitwuzla,
SC22, cvc5, and Z3 over all divisions, Bitwuzla is the fastest solver with 203,838s,
SC22 is slightly slower with 208,310s, cvc5 is 2.85× slower (586,105s), and Z3 is
5.1× slower (1,049,534s).

Table 2 shows the number of solved incremental check-sat queries for each
solver in the incremental divisions. Again, Bitwuzla solves the largest number of
queries overall and in the quantifier-free divisions. For the quantified divisions,
Bitwuzla solves 42,770 queries, the second largest number of solved queries after
Z3 (45,373), and more than 3700 more queries than SC22 (39,040). On bench-
marks of the ABVFPLRA division, Bitwuzla significantly outperforms SC22 due
to the occurrence of nested arrays, which were unsupported in SC22.

The artifact of this evaluation is archived and available in the Zenodo open-
access repository at https://zenodo.org/record/7864687.

5 Conclusion

Our experimental evaluation shows that Bitwuzla is a state-of-the-art SMT
solver for the quantified and quantifier-free theories of fixed-size bit-vectors, ar-
rays, floating-point arithmetic, and uninterpreted functions. Bitwuzla has been
extensively tested for robustness and correctness with Murxla [30], an API fuzzer
for SMT solvers, which is an integral part of its development workflow. We have
outlined several avenues for future work throughout the paper. We further plan
to add support for the upcoming SMT-LIB version 3 standard, when finalized.

https://zenodo.org/record/7864687
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